Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study.

نویسندگان

  • Chi-Cheng Chiu
  • Gregg R Dieckmann
  • Steven O Nielsen
چکیده

Single-walled carbon nanotubes (SWNTs) have unique properties and are projected to have a major impact in nanoscale electronics, materials science, and nanomedicine. Yet, these potential applications are hindered by the need for sample purification to separate SWNTs from each other and from metallic catalyst and amorphous carbon present in as-synthesized samples. Common purification strategies involve dispersing SWNTs as individual tubes in aqueous solution. Towards this end, a designed helical peptide was shown to be excellent at dispersing SWNTs. However, the molecular details of the peptide-SWNT and peptide-peptide interactions await elucidation. Here we explore these molecular interactions using fully atomistic molecular dynamics simulations of peptide-wrapped SWNTs. We characterize the interactions by measuring the aromatic residue-to-SWNT surface distance, the peptide amphiphilicity, the peptide-SWNT crossing angle, the peptide-SWNT contact area, the peptide helix axis-to-axis distance, and the inter-peptide hydrogen bonding. We find that the peptides collectively tilt with respect to the SWNT long axis, are alpha-helical, and form interpeptide hydrogen bonds through their lysine and glutamate residues, which helps to stabilize the multipeptide/SWNT complex. All hydrophobic residues interact with the SWNT and are sequestered from water. The picture that emerges from this study gives insight into subsequent peptide design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of Carbon nanotube on the most effective peptide in Alzheimer's disease in the presence of Dimethyl Sulfoxide: In Silico approach

Due to the non-polar nature of carbon nanotubes, their use in aqueous environments is limited. Therefore, auxiliary solvents such as dimethyl sulfoxide are used to study the interactions between the amyloid-β peptide and carbon nanotubes. In this work, the interaction of Aβ (1-42), the most effective peptide in the development of Alzheimer's disease, with the carbon nanotube was performed using...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide.

Many potential biological applications of single-walled carbon nanotubes (SWNTs) require their dispersion in aqueous conditions. Recently, Dieckmann et al. designed a series of reversible cyclic peptides (RCPs) which exist in linear or cyclized states through controlled formation of an intramolecular disulfide bond between terminal Cys residues. These RCP-Cys peptides have been shown to dispers...

متن کامل

Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.

Many potential applications of single-walled carbon nanotubes (SWNTs) require that they be isolated from one another. This may be accomplished through covalent or noncovalent SWNT functionalization. The noncovalent approach preserves the intrinsic electrical, optical, and mechanical properties of SWNTs and can be achieved by dispersing SWNTs in aqueous solution using surfactants, polymers, or b...

متن کامل

Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes

Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biopolymers

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2009